Package: decompDL 0.1.0

decompDL: Decomposition Based Deep Learning Models for Time Series Forecasting

Hybrid model is the most promising forecasting method by combining decomposition and deep learning techniques to improve the accuracy of time series forecasting. Each decomposition technique decomposes a time series into a set of intrinsic mode functions (IMFs), and the obtained IMFs are modelled and forecasted separately using the deep learning models. Finally, the forecasts of all IMFs are combined to provide an ensemble output for the time series. The prediction ability of the developed models are calculated using international monthly price series of maize in terms of evaluation criteria like root mean squared error, mean absolute percentage error and, mean absolute error. For method details see Choudhary, K. et al. (2023). <https://ssca.org.in/media/14_SA44052022_R3_SA_21032023_Girish_Jha_FINAL_Finally.pdf>.

Authors:Kapil Choudhary [aut, cre], Girish Kumar Jha [aut, ths, ctb], Ronit Jaiswal [ctb], Rajeev Ranjan Kumar [ctb]

decompDL_0.1.0.tar.gz
decompDL_0.1.0.zip(r-4.5)decompDL_0.1.0.zip(r-4.4)decompDL_0.1.0.zip(r-4.3)
decompDL_0.1.0.tgz(r-4.5-any)decompDL_0.1.0.tgz(r-4.4-any)decompDL_0.1.0.tgz(r-4.3-any)
decompDL_0.1.0.tar.gz(r-4.5-noble)decompDL_0.1.0.tar.gz(r-4.4-noble)
decompDL_0.1.0.tgz(r-4.4-emscripten)decompDL_0.1.0.tgz(r-4.3-emscripten)
decompDL.pdf |decompDL.html
decompDL/json (API)

# Install 'decompDL' in R:
install.packages('decompDL', repos = c('https://kapiliasri.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:
  • Data_Maize - Monthly International Maize Price Data

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 184 downloads 12 exports 85 dependencies

Last updated 1 years agofrom:f3712a66e5. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 29 2025
R-4.5-winNOTEMar 29 2025
R-4.5-macNOTEMar 29 2025
R-4.5-linuxNOTEMar 29 2025
R-4.4-winNOTEMar 29 2025
R-4.4-macNOTEMar 29 2025
R-4.4-linuxNOTEMar 29 2025
R-4.3-winNOTEMar 29 2025
R-4.3-macNOTEMar 29 2025

Exports:ceemdGRUceemdLSTMceemdRNNeemdGRUeemdLSTMeemdRNNemdGRUemdLSTMemdRNNvmdGRUvmdLSTMvmdRNN

Dependencies:askpassbackportsbase64encBiocGenericsclicolorspaceconfigcurldata.tablefansifarverforecastfracdiffgenericsggplot2gluegreyboxgtableherehttrisobandjsonlitekeraslabelinglatticelifecyclelmtestmagrittrMAPAMASSMatrixmgcvmimemunsellnlmenloptrnnetopensslpillarpkgconfigplotrixpngpracmaprocessxpsquadprogquantmodR6rappdirsRColorBrewerRcppRcppArmadilloRcppTOMLreticulaterlangRlibeemdrprojrootrstudioapiscalessmoothstatmodsystensorflowtexregtfautographtfrunstibbletidyselecttimeDateTSdeeplearningtseriestsutilsTTRurcautf8vctrsviridisLiteVMDecompwhiskerwithrxtablextsyamlzeallotzoo