Package: EEMDlstm 0.1.0

EEMDlstm: EEMD Based LSTM Model for Time Series Forecasting

Forecasting univariate time series with ensemble empirical mode decomposition (EEMD) with long short-term memory (LSTM). For method details see Jaiswal, R. et al. (2022). <doi:10.1007/s00521-021-06621-3>.

Authors:Kapil Choudhary [aut, cre], Girish Kumar Jha [aut, ths, ctb], Ronit Jaiswal [ctb], Rajeev Ranjan Kumar [ctb]

EEMDlstm_0.1.0.tar.gz
EEMDlstm_0.1.0.zip(r-4.5)EEMDlstm_0.1.0.zip(r-4.4)EEMDlstm_0.1.0.zip(r-4.3)
EEMDlstm_0.1.0.tgz(r-4.4-any)EEMDlstm_0.1.0.tgz(r-4.3-any)
EEMDlstm_0.1.0.tar.gz(r-4.5-noble)EEMDlstm_0.1.0.tar.gz(r-4.4-noble)
EEMDlstm_0.1.0.tgz(r-4.4-emscripten)EEMDlstm_0.1.0.tgz(r-4.3-emscripten)
EEMDlstm.pdf |EEMDlstm.html
EEMDlstm/json (API)

# Install 'EEMDlstm' in R:
install.packages('EEMDlstm', repos = c('https://kapiliasri.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • Data_Maize - Monthly International Maize Price Data

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 221 downloads 2 exports 83 dependencies

Last updated 2 years agofrom:a526c29d39. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 14 2024
R-4.5-winNOTENov 14 2024
R-4.5-linuxNOTENov 14 2024
R-4.4-winNOTENov 14 2024
R-4.4-macNOTENov 14 2024
R-4.3-winNOTENov 14 2024
R-4.3-macNOTENov 14 2024

Exports:eemdLSTMemdLSTM

Dependencies:askpassbackportsbase64encBiocGenericsclicolorspaceconfigcurlfansifarverforecastfracdiffgenericsggplot2gluegreyboxgtableherehttrisobandjsonlitekeraslabelinglatticelifecyclelmtestmagrittrMAPAMASSMatrixmgcvmimemunsellnlmenloptrnnetopensslpillarpkgconfigplotrixpngpracmaprocessxpsquadprogquantmodR6rappdirsRColorBrewerRcppRcppArmadilloRcppTOMLreticulaterlangRlibeemdrprojrootrstudioapiscalessmoothstatmodsystensorflowtexregtfautographtfrunstibbletidyselecttimeDateTSdeeplearningtseriestsutilsTTRurcautf8vctrsviridisLitewhiskerwithrxtablextsyamlzeallotzoo